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Summary
Genomic selection (GS) consists in selecting individuals on the basis of genomic predictions,using a large number of genetic markers. An important question in GS is to determine the numberof markers required for a good prediction. In order to answer this question, we present here newstatistical results regarding Ridge regression. We analyzed rice data from the Philippines andfocused on the flowering time collected during the dry season 2012. Using different densities ofmarkers, we show that at least 1553 markers are required to implement GS.

Causal model vs. Prediction model
Learning sample of size nCausal model⋆ (Q true regressors, with Q bounded)
θ⋆ vector of effects, M⋆ matrix of measures, Y vector of phenotypes

Y =M⋆θ⋆ + e

where Y = (Y1, ..., Yn)′, θ⋆ = (
θ⋆1, ..., θ⋆

Q

)′, e ∼ N(0, σ2
e In)

Bayesian prediction model (K regressors, with K >> n)
θ vector of effects, M matrix of design

Y =Mθ + ε

where Y = (Y1, ..., Yn)′, θ = (θ1, ..., θK )′ ∼ N(0, σ2
θIK ) ,ε ∼ N(0, σ2

ε In), εj |= θk

We assume that the prediction modeldoes not necessarily contain the true regressorsIn other words, each column of M⋆ does not necessarily match a column of M

Validation sample + Accuracy criteria
— Let new denote an individual from the validation set

Ynew = m⋆′new θ⋆ + enew where enew ∼ N(0, σ2
e )and m⋆new vector of measures for the individual new

— Prediction of the continuous variable Ynew
Ŷnew = m′newθ̂ = m′newM′ (

MM′ + λIn
)−1 Y= m′new (

M′M + λIK
)−1 M′Y

⇒ Accuracy criteria
ρ = Cov (

Ŷnew, Ynew)
√
V

(
Ŷnew)

V (Ynew) with mnew and m⋆new random, M is known
Component present in the breeder’s equation (cf. Lynch and Walsh, 1998)

About the accuracy in the Ridge regression framework
The predictor is Ŷnew = m′new (

M′M + λIK
)−1 M′YLet us define :

A1 :=θ⋆′
E

(
m⋆newm′new)

M′V −1M⋆θ⋆ , A2 := σ2
eE

(∥∥∥m′newM′V −1∥∥∥2)
A3 := θ⋆′M⋆′V −1MV (mnew) M′V −1M⋆θ⋆ , A4 := θ⋆′

V
(
m⋆new)

θ⋆ + σ2
eFor the Ridge regression, we have

ρ = A1(A2 + A3)1/2 (A4)1/2
Under the oracle situation, we have Ŷnew = m⋆′newθ⋆ and

ρ = Cor (
m⋆′newθ⋆, Ynew) = √

V (m⋆′newθ⋆)
V (Ynew) = h

In genetics, h2 is called the heritability of the trait
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Results
Using the SVD decomposition of M = U D W ′ and M⋆ = U⋆ D⋆ W ⋆′, an estimation of the accuracyfor the Ridge regression is (under several conditions)

ρ̂ = Â1(
Â2 + Â3)1/2 (

Â4)1/2
where

Â1 = 1
n

r∑
s=1

d2
s

d2s + λ

∥∥∥U (s)U (s)′M⋆θ⋆
∥∥∥2 , Â2 = σ2

e
n

r∑
s=1

d4
s(d2s + λ)2

Â3 = 1
n

r∑
s=1

d4
s(d2s + λ)2 ∥∥∥U (s)U (s)′M⋆θ⋆

∥∥∥2 , Â4 = 1
n

r⋆∑
s=1 d⋆2

s
∥∥∥W ⋆(s)W ⋆(s)′θ⋆

∥∥∥2 + σ2
e

We discuss the link between— the singular values d⋆1 ≥ d⋆2 ≥ . . . ≥ d⋆
r⋆ > 0 and d1 ≥ d2 ≥ . . . ≥ dr > 0— the regularization parameter λ— the projection of the signal M⋆θ⋆ on the different subspacesFor that, we consider λ → +∞ with λ = o
(

d⋆21 ), and also the partitions Ω⋆1, Ω⋆2, Ω⋆3 of {1, . . . , r⋆}and Ω1, Ω2, Ω3 of {1, . . . , r}, such as
Ω⋆1 := {

ℓ
∣∣∣λ = o(d⋆2

ℓ )} , Ω1 := {
s

∣∣∣λ = o(d2
s)}

Ω⋆2 := {
ℓ

∣∣∣∣∣d⋆2
ℓ ∼ 1

C⋆
ℓ

λ with C⋆
ℓ > 0} , Ω2 := {

s
∣∣∣∣d2

s ∼ 1
Cs

λ avec Cs > 0}
Ω⋆3 := {

ℓ
∣∣∣d⋆2

ℓ = o(λ)} , Ω3 := {
s

∣∣∣d2
s = o(λ)}

and several technical conditions
• (C1⋆) n2τ

r⋆
∑

ℓ∈Ω⋆1
d⋆2

ℓ → +∞ • (C2) ∑
s∈Ω3

d2
s = o(λ)

• (C3) ∑
s∈Ω3

d4
s = o(λ2) • (C4⋆) n2τ

r⋆ = o(1/λ)
• (C5) #Ω1 = O(1) • (C6) #Ω2 = O(1)
• (C7⋆) n2τ

r⋆
∑

ℓ∈Ω⋆1
ξ (ℓ)2 d⋆2

ℓ = o(1) • (C8⋆) n2τ

r⋆
∑

ℓ∈Ω⋆1
ξ (ℓ)3 d⋆2

ℓ = o(1)
to show the convergence to the oracle accuracy. For large n, ρ̂ ∼

√
ξ(n)h. 1−ξ(n) can be viewedas a loss coefficient : it is the percentage of the L2 norm of U⋆(ℓ) that is unable to be captured

Applications on simulated data and on rice real data
Is ρ̂ a good proxy for the accuracy ρ ?We need to estimate the nuisance parameters θ⋆ and M⋆

⇒ we consider more markers for TRN than for TSTComparison between :— new proxy with more markers for TRN than for TST (imperfect linkage disequilibrium)— old proxy with the same number of markers for TRN and TST (complete linkage)Simulated data (panmictic population)A small example with 1,000 markers for TRN and 500 markers for TST
Method 50 generations 70 generations 100 generations MSEEmp. Acc. 0.3909 0.3772 0.3217

ρ̂(M̂⋆, θ̂⋆
LASSO) 0.3397 (0.0112) 0.3436 (0.0132) 0.2629 (0.0146) 0.0130

ρ̂(M̂⋆, θ̂⋆
GPLASSO) 0.2413 (0.0334) 0.3059 (0.0179) 0.2178 (0.0228) 0.0247

ρ̂(M̂⋆, θ̂⋆
ADLASSO) 0.4677 (0.01293) 0.4821 (0.0222) 0.4093 (0.0164) 0.0172

ρ̂pLD(θ̂ADLASSO) 0.2970 (0.0336) 0.3182 (0.0306) 0.0986 (0.0693) 0.0445
Rice flowering time (data from Spindel et al, Plos Genetics 2015)— K = 73,147 for TRN— 4 densities of markers for TST (448, 781, 1553 and 3076)— 252 TRN, 63 TST (i.e. 80% and 20%) + 100 samplings
Number of markers (SNPs) required for predicting the TST individuals

Method 448 SNPs 781 SNPs 1553 SNPs 3076 SNPs MSEEmp. Acc. 0.4789 0.4919 0.5275 0.5242
ρ̂(M̂⋆, θ̂⋆

LASSO) 0.4621 (0.0244) 0.4653 (0.0226) 0.4737 (0.0254) 0.4728 (0.0263) 0.0247
ρ̂(M̂⋆, θ̂⋆

ADLASSO) 0.4269 (0.0355) 0.4379 (0.0376) 0.4520 (0.0419) 0.4461 (0.0430) 0.0395
ρ̂pLD(θ̂ADLASSO) 0.3662 (0.0454) 0.4202 (0.0281) 0.4919 (0.0215) 0.4952 (0.0342) 0.0323


