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IMAG, Institut Montpelliérain Alexander Grothendieck
Key Initiative MUSE Data & Life Sciences
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Selective Genotyping is highly linked to GS

Genotyping was expensive in the past

⇒ Selective Genotyping : we genotype only individuals who present extreme
phenotypes Y

At a given power, a large increase of the number of individuals

leads to a decrease of the number of individuals genotyped

Lebowitz et al. (Theoretical and Applied Genetics, 1987)
Darvasi and Soller (Theoretical and Applied Genetics, 1992)

To go further in the statistical theory :

R. (Journal of Statistical Planning and Inference, 2014)
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Model corresponding to selective genotyping

Probability distribution of the phenotypes Y

Worst scenario Best scenario
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Can we elaborate a method able to learn
a model based on extreme individuals?
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Context of our study

The chromosome is represented by a segment [0,T ]

The distance on [0,T ] is called the genetic distance

X (.) : random process representing the genome of one individual

We consider Haldane modeling
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Haldane Modeling (1919)

no crossover interference

X (t) : random variable corresponding to the genome information at t

X (0) ∼ 1
2

(δ+1 + δ−1), X (t) = X (0)(−1)N(t)

where N(.) is a Poisson process with intensity 1 on [0,T ]

r(t , t ′) : probability of recombination between two loci

r(t , t ′) = P(X (t)X (t ′) = −1) = P(
∣∣N(t)− N(t ′)

∣∣ odd)

=
1
2

(1− e−2|t−t′|) =
1
2

(1− ρ(t , t ′))
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Model

K genetic markers on [0,T ] located at

t1 = 0 < t2 < ... < tK = T

m QTLs (i.e. Quantitative Trait Loci) located at

0 ≤ t?1 < t?2 < . . . < t?m ≤ T

Assuming a linear model for the phenotype Y

Y = µ+
m∑

s=1

X (t?s )qs + σε with ε ∼ N(0, 1)

Genome information X(.) available :

only at genetic markers t1, . . ., tK
only if Y is extreme (i.e. Y > S+ or Y < S−)

⇒ Dependency between the alleles at the markers and the extreme
phenotypes Y
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One observation
X (t) is the random variable such as

X (t) =

{
X (t) if Y /∈ [S− , S+]

0 otherwise

then, under our selective genotyping framework, one observation is(
Y , X (t1), X (t2), ..., X (tK )

)
.
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The Interval Mapping of Lander and Botstein (1989)

It assumes a maximum of m = 1 QTL
Λn(t) : Likelihood Ratio Test at a given location t ∈ [0,T ], for testing
q1 = 0 vs q1 6= 0
Λn(.) : Likelihood Ratio Test process on [0,T ]

supt∈[0,T ] Λn(t) : Likelihood Ratio Test of H0 “no QTL on [0,T ]” vs H1

“there exists one QTL at t?1 ”, i.e. LRT on the whole interval
arg sup Λn(.) : natural estimator for the QTL location

One path of the process Λn(.) (T = 20cM, K = 2)
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The true probability distribution when m = 1

When only one QTL lies on the genome (i.e. m = 1) at t = t?1 :

Lt?1
(q1, µ, σ) =

[{
p(t?1 )f(µ+q1,σ)(Y ) + (1− p(t?1 ))f(µ−q1,σ)(Y )

}
1Y /∈[S−,S+]

+

{
1
2

f(µ+q1,σ)(Y ) +
1
2

f(µ−q1,σ)(Y )

}
1Y∈[S−,S+]

]
g(.)

where

p(t?1 ) = P[X (t?1 ) = 1|X (t1), · · · ,X (tK )]

f(m,σ) is the Gaussian density with parameters (m, σ)

g(.) is a function which does not depend on parameters q1, µ and σ
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Score statistic and LRT statistic

θ1 = (q1, µ, σ) parameter of the model at t fixed

θ1
0 = (0, µ, σ) stands for H0

Score statistic at t :

Sn(t) =

∂lnt
∂q1
|θ1

0√
Var

(
∂lnt
∂q1
|θ1

0

) ,

with ln
t (θ1) log likelihood at t , associated to n observations.

LRT statistic at t :
Λn(t) = 2

{
ln
t (θ̂1)− ln

t (θ̂1|H0 )
}

,

with θ̂1 MLE, and θ̂1|H0 MLE under H0.

known t?1 ⇒ regular model

unknown t?1 ⇒ irregular model (under H0, the Fisher Information Matrix
relative to t is equal to zero)
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Hypothesis studied and extra notations
We will study the asymptotic properties of Sn(.) and Λn(.)
under the following hypothesis :

Hat? : “there are m QTL located at t?1 , ..., t?m with effects
q1 = a1/

√
n, . . . , qm = am/

√
n where a1 6= 0, . . . , am 6= 0” .

A few extra notations :
TK := {t1, ..., tK}
t` := sup {tk ∈ TK : tk < t}
t r := inf {tk ∈ TK : t < tk}

In other words, t belongs to the “Marker interval” (t`, t r )

A key factor linked to selection intensity

S+ S- mu
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About the key factor linked to selection intensity

A := σ2 {γ + zγ+ ϕ(zγ+ ) − z1−γ− ϕ(z1−γ−)
}

γ := PH0 (Y /∈ [S−, S+])

γ+ := PH0 (Y > S+)

γ− := PH0 (Y < S−)

where ϕ(x) and zα denote respectively the density of a standard normal
distribution taken at the point x , and the quantile of order 1− α of a standard
normal distribution.

γ+/γ = 1/2 3/4 7/8 1
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A non linear interpolation
on the “Marker interval” (t `, t r)

Theorem (R. & Delmas, Statistics 2021)

Sn(.)⇒ Z (.) , Λn(.)
F .d.→ Z 2(.) , sup Λn(.)

L−→ sup Z 2(.) where

Z (.) is the non linear interpolated process such as

∀t ∈ [0,T ]\TK Z (t) =
α(t) Z (t`) + β(t) Z (t r )√

α2(t) + β2(t) + 2α(t)β(t)ρ(t`, t r )

with Cov {Z (tk ),Z (tk′ )} = ρ(tk , tk′ ) ∀(tk , tk′ ) ∈ TK × TK

Z (.) is a Gaussian process with unit variance and with expectation :

under Hat? : mt? (t`) =
m∑

s=1

as
√
A ρ(t`, t?s )/σ2 , mt? (t r ) =

m∑
s=1

as
√
A ρ(t?s , t

r )/σ2

∀t ∈ [0,T ]\TK mt? (t) =
α(t) mt? (t`) + β(t) mt? (t r )√
α2(t) + β2(t) + 2α(t)β(t)ρ(t`, t r )
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Intuition on asymptotic theory

At a marker tk , the score statistic can be decomposed in the following way :

Sn(tk ) =
n∑

j=1

m∑
s=1

qs X j (t?s ) X j (tk )√
n A

+
n∑

j=1

σεj X j (tk )√
n A

Then, according to a technical proof , we have the relationship

n∑
j=1

σεj X j (tk )√
n A

L−→ N [Ω, 1]

where Ω is a function of a1, . . ., am, t?1 , . . ., t?m, tk , S− and S+.

The correlation between ε and X (tk ) plays a role in the asymptotic theory
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Mean function under selective genotyping (K = 2
markers, T = 20cM, m = 1 QTL)
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Introducing the SgenoLasso
1) we discretize the process at marker locations

~Sn = ~mt? + ~ε + oP(1)

where ~Sn = (Sn(t1) , Sn(t2) , ... , Sn(tK ))′

~mt? = (mt?(t1) , mt?(t2) , ...,mt?(tK ))′

~ε ∼ N(0,Σ) with Σkk′ = Cov (Z (tk ),Z (tk′))

2) we decorrelate the process

Let T?K := {t?1 , . . . , t?m} and Σ := BB′, we have

B−1~Sn = B′∆ + B−1~ε + oP(1)

where ∆ := (∆1, ...,∆K )′

and ∆k =

{
0 if tk /∈ T?K
as
σ

√
A
σ

if tk ∈ T?K with s | t?s = tk

S+ S- mu
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Introducing the SgenoLasso
In fact, non null ∆k are unknown
⇒ L1 penalized regression Lasso (Tibshirani, 1996)

∆̂SgenoLasso(λ, α) = arg min
∆

(∥∥∥B−1~Sn − B′∆
∥∥∥2

2
+ λ ‖∆‖1

)
SgenoLasso presents all the properties of the classical Lasso !

Its β-min condition :

min
s|t?s ∈TK

|as|
√
A

σ2
√

K
>> Φ−2

√
m log(K )

K

Its irrepresentable condition :∥∥∥Σ(.,?)(Σ(?,?))−1Sign(a1, . . . ,am)
∥∥∥
∞
≤ C < 1

where ‖x‖∞ = maxj
∣∣xj
∣∣, Sign(a1, . . . ,am) = (Sign(a1), . . . ,Sign(am))>

β-min condition + irrep cond⇒ consistent variable selection
19
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Applications to association studies (Simulated data)
(n = 500, γ = 20%) or (n = 333, γ = 30%)
K =10,000 markers on [0, 10M] / 1,000 markers on [0, 1M]

m = 16 QTLs located only on [0, 1M]

L1 ratio
∑1000

i=1 |∆̂i |/
∑10000

i=1 |∆̂i |

γ γ+/γ SgenoLasso Lasso Group Lasso EN RALasso

0.2

1/2 94.19% 91.69% 97.46% 97.44% 98.09%
3/4 91.52% 84.75% 95.88% 96.02% 95.08%
7/8 92.38% 75.46% 94.67% 95.23% 89.33%
1 85.03% 21.14% 21.86% 27.37% 44.93%

0.3

1/2 91.62% 83.45% 92.87% 93.67% 95.36%
3/4 90.88% 76.18% 89.59% 91.10% 91.13%
7/8 86.22% 65.03% 78.00% 82.84% 80.32%
1 78.00% 20.92% 20.82% 24.92% 48.25%

γ+/γ =1/2 3/4 7/8 1
20
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The SgenoLasso has several cousins

SgenoLasso is built on the L1 penalty of Lasso (Tibshirani, 1996)

∆̂SgenoLasso(λ, α) = arg min
∆

(∥∥∥B−1~Sn − B′∆
∥∥∥2

2
+ λ ‖∆‖1

)

SgenoElasticNet is built on the mixture of L1 and L2 penalties of Elastic Net
(Zou and Hastie, 2005)

∆̂SgenoEN(λ, α) = arg min
∆

(∥∥∥B−1~Sn − B′∆
∥∥∥2

2
+

1− α
2
‖∆‖2

2 + α ‖∆‖1

)

SgenoGroupLasso is built on the Group Lasso penalty (Yuan and Lin, 2006)

∆̂SgenoGroupLasso(λ) = arg min
∆

(∥∥∥B−1~Sn − B′∆
∥∥∥2

2
+ λ

nbGroup∑
i=1

√
Li

∥∥∥~∆i

∥∥∥
2

)
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The SgenoLasso has several cousins
10,000 markers on [0, 10M] / 1,000 markers on [0, 1M]

16 QTLs located only on [0, 1M]

L1 ratio
∑1000

i=1 |∆̂i |/
∑10000

i=1 |∆̂i |

SgenoLasso SgenoGroupLasso SgenoEN
γ γ+/γ L1 ratio L1 ratio L1 ratio

0.2

1/2 94.19% 98.33% 96.03%
3/4 91.52% 95.38% 92.59%
7/8 92.38% 96.83% 93.19%
1 85.03% 90.53% 84.93%

0.3

1/2 91.62% 92.35% 86.53%
3/4 90.88% 94.84% 91.84%
7/8 86.22% 89.96% 86.68%
1 78.00% 82.61% 77.23%

γ+/γ = 1/2 3/4 7/8 1 22
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The predictive ability of the SgenoLasso (simulated
data, K=10,000 markers)

Accuracy criterion Cor(ŷ , y)

γ γ+/γ SgenoLasso Lasso Group Lasso EN RaLasso

0.1 1 30.97% 6.49% 3.17% 4.38% 10.43%
7/8 31.25% 30.55% 29.87% 29.74% 28.78%

0.2 1 27.88% 7.12% 4.05% 5.41% 11.08%
7/8 28.26% 27.98% 27.86% 28.09% 26.28%

0.3 1 26.79% 9.02% 6.89% 7.48% 11.96%
7/8 28.13% 27.85% 26.59% 28.25% 26.05%

γ+/γ = 7/8 γ+/γ = 1

Our answer to Brandariz and Bernardo (Crop Science, 2018) :
no need to keep the worst individuals in the breeding programs 23
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Rice real data

Data from Spindel et al. (Plos Genetics, 2015) and
from Begum et al. (Plos One, 2015)

Trait of interest : flowering date during the dry season 2012

K =13,101 markers, randomly chosen by the authors from their 73,147
collected markers

n = 312 in total (i.e. under complete genotyping)

only 93 extreme individuals when γ = 0.3

we performed a symmetrical selective genotyping (i.e. γ+/γ = 1/2)
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Rice real data

γ Method Selected QTLs
1 Begum et al. S3-1125848, S3-1165376, S3-1221494, S3-1269941, S3-1394477

0.3 SgenoLasso 4 QTLs matching those of Begum et al. (2015)
0.3 SgenoEN 5 QTLs matching those of Begum et al. (2015)
0.3 SgenoGroupLasso 5 QTLs matching those of Begum et al. (2015)
0.3 Lasso 2 QTLs matching those of Begum et al. (2015)
0.3 EN 5 QTLs matching those of Begum et al. (2015)
0.3 Group Lasso 3 QTLs matching those of Begum et al. (2015)
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Thank you for listening
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