The SgenoLasso for gene mapping and genomic prediction

Charles-Elie Rabier, Céline Delmas

IMAG, Institut Montpelliérain Alexander Grothendieck Key Initiative MUSE Data & Life Sciences Université de Toulouse, INRAE, UR MIAT

08/25/2022

Introduction SgenoLasso References

Genomic Selection (GS)

GS motivated by Meuwissen et al (Genetics, 2001)

Selective Genotyping is highly linked to GS

Genotyping was expensive in the past

 \Rightarrow Selective Genotyping : we genotype only individuals who present extreme phenotypes Y

At a given power, a large increase of the number of individuals

leads to a decrease of the number of individuals genotyped

Lebowitz et al. (Theoretical and Applied Genetics, 1987) Darvasi and Soller (Theoretical and Applied Genetics, 1992)

To go further in the statistical theory :

R. (Journal of Statistical Planning and Inference, 2014)

Model corresponding to selective genotyping

Probability distribution of the phenotypes Y

Worst scenario

Best scenario

Can we elaborate a method able to learn a model based on extreme individuals?

Context of our study

- The chromosome is represented by a segment [0, T]
- The distance on [0, T] is called the genetic distance
- X(.) : random process representing the genome of one individual
- We consider Haldane modeling

Haldane Modeling (1919)

- no crossover interference
- X(t) : random variable corresponding to the genome information at t

$$X(0) \sim \frac{1}{2}(\delta_{+1} + \delta_{-1}), \ \ X(t) = X(0)(-1)^{N(t)}$$

where N(.) is a Poisson process with intensity 1 on [0, T]

• r(t, t') : probability of recombination between two loci

$$r(t, t') = \mathbb{P}(X(t)X(t') = -1) = \mathbb{P}(|N(t) - N(t')| \text{ odd})$$
$$= \frac{1}{2} (1 - e^{-2|t - t'|}) = \frac{1}{2} (1 - \rho(t, t'))$$

Model

• K genetic markers on [0, T] located at

$$t_1 = 0 < t_2 < ... < t_K = T$$

m QTLs (i.e. Quantitative Trait Loci) located at

$$0 \leq t_1^\star < t_2^\star < \ldots < t_m^\star \leq T$$

Assuming a linear model for the phenotype Y

$$Y = \mu + \sum_{s=1}^{m} X(t_s^*) q_s + \sigma \varepsilon$$
 with $\varepsilon \sim N(0, 1)$

• Genome information X(.) available :

only at genetic markers t₁, ..., t_K
only if Y is extreme (i.e. Y > S₊ or Y < S₋)

 \Rightarrow Dependency between the alleles at the markers and the extreme phenotypes *Y*

One observation

 $\overline{X}(t)$ is the random variable such as

$$\overline{X}(t) = egin{cases} X(t) & ext{if} \ \ Y
otin \ \ [S_- \ , \ S_+] \ 0 & ext{otherwise} \end{cases}$$

then, under our selective genotyping framework, one observation is

$$\left(Y, \ \overline{X}(t_1), \ \overline{X}(t_2), \ ..., \ \overline{X}(t_K)\right)$$

Introduction SgenoLasso References

The Interval Mapping of Lander and Botstein (1989)

- It assumes a maximum of m = 1 QTL
- $\Lambda_n(t)$: Likelihood Ratio Test at a given location $t \in [0, T]$, for testing $q_1 = 0$ vs $q_1 \neq 0$
- Λ_n(.): Likelihood Ratio Test process on [0, T]
- sup_{t∈[0,T]} Λ_n(t) : Likelihood Ratio Test of H₀ "no QTL on [0, T]" vs H₁ "there exists one QTL at t₁^{*}", i.e. LRT on the whole interval
- $\arg \sup \Lambda_n(.)$: natural estimator for the QTL location

The true probability distribution when m = 1

When only one QTL lies on the genome (i.e. m = 1) at $t = t_1^*$:

$$\begin{aligned} L_{t_{1}^{*}}(q_{1}, \mu, \sigma) &= \left[\left\{ p(t_{1}^{*}) f_{(\mu+q_{1},\sigma)}(Y) + (1-p(t_{1}^{*})) f_{(\mu-q_{1},\sigma)}(Y) \right\} \mathbf{1}_{Y \notin [S_{-},S_{+}]} \\ &+ \left\{ \frac{1}{2} f_{(\mu+q_{1},\sigma)}(Y) + \frac{1}{2} f_{(\mu-q_{1},\sigma)}(Y) \right\} \mathbf{1}_{Y \in [S_{-},S_{+}]} \right] g(.) \end{aligned}$$

where

- $p(t_1^*) = P[X(t_1^*) = 1 | X(t_1), \cdots, X(t_K)]$
- $f_{(m,\sigma)}$ is the Gaussian density with parameters (m, σ)
- g(.) is a function which does not depend on parameters q_1 , μ and σ

Score statistic and LRT statistic

- $\theta^1 = (q_1, \mu, \sigma)$ parameter of the model at *t* fixed
- $\theta_0^1 = (0, \mu, \sigma)$ stands for H_0

Score statistic at t :

$$S_n(t) = rac{rac{\partial l_n^n}{\partial q_1} \mid_{ heta_0^1}}{\sqrt{ ext{Var}\left(rac{\partial l_n^n}{\partial q_1} \mid_{ heta_0^1}
ight)}} \;,$$

with $I_t^n(\theta^1)$ log likelihood at *t*, associated to *n* observations.

LRT statistic at t :

$$\Lambda_n(t) = 2\left\{ l_t^n(\widehat{\theta_1}) - l_t^n(\widehat{\theta_1}|_{H_0}) \right\} ,$$

with $\hat{\theta_1}$ MLE, and $\hat{\theta_1}_{|H_0}$ MLE under H_0 .

- known $t_1^* \Rightarrow$ regular model
- unknown t^{*}₁ ⇒ irregular model (under H₀, the Fisher Information Matrix relative to t is equal to zero)

Introduction SgenoLasso References

Model Stochastic processes A new Lasso

Hypothesis studied and extra notations

We will study the asymptotic properties of $S_n(.)$ and $\Lambda_n(.)$ under the following hypothesis :

 $H_{at^{\star}}$: "there are *m* QTL located at t_1^{\star} , ..., t_m^{\star} with effects $q_1 = a_1/\sqrt{n}, \ldots, q_m = a_m/\sqrt{n}$ where $a_1 \neq 0, \ldots, a_m \neq 0$ ".

A few extra notations :

• $\mathbb{T}_{\mathcal{K}} := \{t_1, ..., t_{\mathcal{K}}\}$

•
$$t^\ell := \sup \left\{ t_k \in \mathbb{T}_K : t_k < t \right\}$$

• $t^r := \inf \{t_k \in \mathbb{T}_K : t < t_k\}$

In other words, t belongs to the "Marker interval" (t^{ℓ}, t^{r})

A key factor linked to selection intensity

About the key factor linked to selection intensity

$$\begin{split} \mathcal{A} &:= \sigma^2 \ \left\{ \gamma \ + \ z_{\gamma_+} \ \varphi(z_{\gamma_+}) \ - \ z_{1-\gamma_-} \ \varphi(z_{1-\gamma_-}) \right\} \\ \gamma &:= \mathbb{P}_{\mathcal{H}_0} \left(Y \notin [S_-, \ S_+] \right) \\ \gamma_+ &:= \mathbb{P}_{\mathcal{H}_0} \left(Y > S_+ \right) \\ \gamma_- &:= \mathbb{P}_{\mathcal{H}_0} \left(Y < S_- \right) \end{split}$$

where $\varphi(x)$ and z_{α} denote respectively the density of a standard normal distribution taken at the point *x*, and the quantile of order $1 - \alpha$ of a standard normal distribution.

Introduction SgenoLasso References

A non linear interpolation on the "Marker interval" (t^{ℓ}, t^{r})

Theorem (R. & Delmas, Statistics 2021)

$$S_n(.) \Rightarrow Z(.)$$
 , $\Lambda_n(.) \xrightarrow{F.d.} Z^2(.)$, $\sup \Lambda_n(.) \xrightarrow{\mathcal{L}} \sup Z^2(.)$ where

Z(.) is the non linear interpolated process such as

$$\forall t \in [0, T] \setminus \mathbb{T}_{K} \quad Z(t) = \frac{\alpha(t) \ Z(t^{\ell}) + \beta(t) \ Z(t')}{\sqrt{\alpha^{2}(t) + \beta^{2}(t) + 2\alpha(t)\beta(t)\rho(t^{\ell}, t')}}$$

$$with \quad Cov \{Z(t_{k}), Z(t_{k'})\} = \rho(t_{k}, t_{k'}) \quad \forall (t_{k}, t_{k'}) \in \mathbb{T}_{K} \times \mathbb{T}_{K}$$

I (.) is a Gaussian process with unit variance and with expectation :

under
$$H_{at^{\star}}$$
: $m_{t^{\star}}(t^{\ell}) = \sum_{s=1}^{m} a_{s} \sqrt{\mathcal{A}} \rho(t^{\ell}, t^{\star}_{s}) / \sigma^{2}$, $m_{t^{\star}}(t^{r}) = \sum_{s=1}^{m} a_{s} \sqrt{\mathcal{A}} \rho(t^{\star}_{s}, t^{r}) / \sigma^{2}$
 $\forall t \in [0, T] \setminus \mathbb{T}_{K} \quad m_{t^{\star}}(t) = \frac{\alpha(t) \ m_{t^{\star}}(t^{\ell}) + \beta(t) \ m_{t^{\star}}(t^{r})}{\sqrt{\alpha^{2}(t) + \beta^{2}(t) + 2\alpha(t)\beta(t)\rho(t^{\ell}, t^{r})}}$

Intuition on asymptotic theory

At a marker t_k , the score statistic can be decomposed in the following way :

$$S_n(t_k) = \sum_{j=1}^n \sum_{s=1}^m \frac{q_s \,\overline{X}_j(t_s^*) \,\overline{X}_j(t_k)}{\sqrt{n \,\mathcal{A}}} + \sum_{j=1}^n \frac{\sigma \varepsilon_j \,\overline{X}_j(t_k)}{\sqrt{n \,\mathcal{A}}}$$

Then, according to a technical proof , we have the relationship

$$\sum_{j=1}^{n} \frac{\sigma \varepsilon_{j} \, \overline{X}_{j}(t_{k})}{\sqrt{n \, \mathcal{A}}} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N} \left[\Omega, 1\right]$$

where Ω is a function of $a_1, \ldots, a_m, t_1^*, \ldots, t_m^*, t_k, S_-$ and S_+ .

The correlation between ε and $\overline{X}(t_k)$ plays a role in the asymptotic theory

Introduction SgenoLasso References

Model Stochastic processes A new Lasso

Mean function under selective genotyping (K = 2 markers, T = 20 cM, m = 1 QTL)

 \bigwedge

Introducing the SgenoLasso

1) we discretize the process at marker locations $\vec{S}_n = \vec{m}_{t^*} + \vec{\varepsilon} + o_P(1)$ where $\vec{S}_n = (S_n(t_1), S_n(t_2), ..., S_n(t_K))'$ $\vec{m}_{t^*} = (m_{t^*}(t_1), m_{t^*}(t_2), ..., m_{t^*}(t_K))'$ $\vec{\varepsilon} \sim N(0, \Sigma)$ with $\Sigma_{kk'} = \text{Cov} (Z(t_k), Z(t_{k'}))$

2) we decorrelate the process

Let $\mathbb{T}_{K}^{\star} := \{t_{1}^{\star}, \dots, t_{m}^{\star}\}$ and $\Sigma := BB'$, we have $B^{-1}\vec{S}_{n} = B'\Delta + B^{-1}\vec{\varepsilon}^{\star} + o_{P}(1)$ where $\Delta := (\Delta_{1}, \dots, \Delta_{K})'$ and $\Delta_{k} = \begin{cases} 0 & \text{if } t_{k} \notin \mathbb{T}_{K}^{\star} \\ \frac{a_{s}}{\sigma} & \frac{\sqrt{A}}{\sigma} & \text{if } t_{k} \in \mathbb{T}_{K}^{\star} \text{ with } s \mid t_{s}^{\star} = t_{k} \end{cases}$

Introducing the SgenoLasso

In fact, non null Δ_k are unknown

 \Rightarrow L1 penalized regression Lasso (Tibshirani, 1996)

$$\hat{\Delta}_{\text{SgenoLasso}}(\lambda, \alpha) = \arg\min_{\Delta} \left(\left\| B^{-1} \vec{S}_n - B' \Delta \right\|_2^2 + \lambda \left\| \Delta \right\|_1 \right)$$

SgenoLasso presents all the properties of the classical Lasso !

Its β -min condition :

$$\min_{\boldsymbol{s} \mid t_s^* \in \mathbb{T}_K} \frac{|\boldsymbol{a}_s| \sqrt{\mathcal{A}}}{\sigma^2 \sqrt{K}} >> \Phi^{-2} \sqrt{\frac{m \log(K)}{K}}$$

Its irrepresentable condition :

$$\left\| \Sigma^{(.,\star)}(\Sigma^{(\star,\star)})^{-1} \mathsf{Sign}(a_1,\ldots,a_m)
ight\|_\infty \leq C < 1$$

where $\|x\|_{\infty} = \max_{j} |x_{j}|$, Sign $(a_{1}, \ldots, a_{m}) = (\text{Sign}(a_{1}), \ldots, \text{Sign}(a_{m}))^{\top}$

β -min condition + irrep cond \Rightarrow consistent variable selection

Applications to association studies (Simulated data)

 $(n = 500, \gamma = 20\%)$ or $(n = 333, \gamma = 30\%)$ K =10,000 markers on [0, 10M] / 1,000 markers on [0, 1M] m = 16 QTLs located only on [0, 1M]

L1 ratio $\sum_{i=1}^{1000} |\hat{\Delta}_i| / \sum_{i=1}^{10000} |\hat{\Delta}_i|$

γ	γ^+/γ	SgenoLasso	Lasso	Group Lasso	EN	RALasso
0.2	1/2	94.19%	91.69%	97.46%	97.44%	98.09%
	3/4	91.52%	84.75%	95.88%	96.02%	95.08%
	7/8	92.38%	75.46%	94.67%	95.23%	89.33%
	1	85.03%	21.14%	21.86%	27.37%	44.93%
0.3	1/2	91.62%	83.45%	92.87%	93.67%	95.36%
	3/4	90.88%	76.18%	89.59%	91.10%	91.13%
	7/8	86.22%	65.03%	78.00%	82.84%	80.32%
	1	78.00%	20.92%	20.82%	24.92%	48.25%
/	\bigwedge			\square	<u> </u>	
$\gamma^+/\gamma = 1/2$		3/4	7/8	1		

20

The SgenoLasso has several cousins

SgenoLasso is built on the L1 penalty of Lasso (Tibshirani, 1996)

$$\hat{\Delta}_{\text{SgenoLasso}}(\lambda, \alpha) = \arg\min_{\Delta} \left(\left\| \boldsymbol{B}^{-1} \vec{\boldsymbol{S}}_{n} - \boldsymbol{B}^{\prime} \Delta \right\|_{2}^{2} + \lambda \left\| \Delta \right\|_{1} \right)$$

SgenoElasticNet is built on the mixture of L1 and L2 penalties of Elastic Net (Zou and Hastie, 2005)

$$\hat{\Delta}_{\text{SgenoEN}}(\lambda, \alpha) = \arg\min_{\Delta} \left(\left\| B^{-1} \vec{S}_n - B' \Delta \right\|_2^2 + \frac{1 - \alpha}{2} \left\| \Delta \right\|_2^2 + \alpha \left\| \Delta \right\|_1 \right)$$

SgenoGroupLasso is built on the Group Lasso penalty (Yuan and Lin, 2006)

$$\hat{\Delta}_{\text{SgenoGroupLasso}}(\lambda) = \arg\min_{\Delta} \left(\left\| \boldsymbol{B}^{-1} \boldsymbol{\vec{S}}_{n} - \boldsymbol{B}' \Delta \right\|_{2}^{2} + \lambda \sum_{i=1}^{\text{nbGroup}} \sqrt{L_{i}} \left\| \boldsymbol{\vec{\Delta}}_{i} \right\|_{2} \right)$$

The SgenoLasso has several cousins

10,000 markers on [0, 10M] / 1,000 markers on [0, 1M] 16 QTLs located only on [0, 1M]

L1 ratio $\sum_{i=1}^{1000} |\hat{\Delta}_i| / \sum_{i=1}^{10000} |\hat{\Delta}_i|$

		SgenoLasso	SgenoGroupLasso	SgenoEN
γ	γ^+/γ	L1 ratio	L1 ratio	L1 ratio
0.2	1/2	94.19%	98.33%	96.03%
	3/4	91.52%	95.38%	92.59%
	7/8	92.38%	96.83%	93.19%
	1	85.03%	90.53%	84.93%
	1/2	91.62%	92.35%	86.53%
0.0	3/4	90.88%	94.84%	91.84%
0.3	7/8	86.22%	89.96%	86.68%
	1	78.00%	82.61%	77.23%
γ^+/γ	= 1/2	3/4	7/8 1	

Model Stochastic processes A new Lasso

The predictive ability of the SgenoLasso (simulated data, K=10,000 markers)

Accuracy criterion $Cor(\hat{y}, y)$

γ	γ^+/γ	SgenoLasso	Lasso	Group Lasso	EN	RaLasso
0.1	1	30.97%	6.49%	3.17%	4.38%	10.43%
	7/8	31.25%	30.55%	29.87%	29.74%	28.78%
0.2	1	27.88%	7.12%	4.05%	5.41%	11.08%
	7/8	28.26%	27.98%	27.86%	28.09%	26.28%
0.3	1	26.79%	9.02%	6.89%	7.48%	11.96%
	7/8	28.13%	27.85%	26.59%	28.25%	26.05%

Our answer to Brandariz and Bernardo (Crop Science, 2018) : no need to keep the worst individuals in the breeding programs

Rice real data

Data from Spindel et al. (Plos Genetics, 2015) and from Begum et al. (Plos One, 2015)

- Trait of interest : flowering date during the dry season 2012
- K = 13,101 markers, randomly chosen by the authors from their 73,147 collected markers
- n = 312 in total (i.e. under complete genotyping)
- only 93 extreme individuals when $\gamma = 0.3$
- we performed a symmetrical selective genotyping (i.e. $\gamma^+/\gamma = 1/2$)

Rice real data

γ	Method	Selected QTLs
1	Begum et al.	S3-1125848, S3-1165376, S3-1221494, S3-1269941, S3-1394477
0.3	SgenoLasso	4 QTLs matching those of Begum et al. (2015)
0.3	SgenoEN	5 QTLs matching those of Begum et al. (2015)
0.3	SgenoGroupLasso	5 QTLs matching those of Begum et al. (2015)
0.3	Lasso	2 QTLs matching those of Begum et al. (2015)
0.3	EN	5 QTLs matching those of Begum et al. (2015)
0.3	Group Lasso	3 QTLs matching those of Begum et al. (2015)

Thank you for listening

A few references :

- S.P. Brandariz and R. Bernardo. Maintaining the Accuracy of Genomewide Predictions when Selection Has Occurred in the Training Population, Crop Science (2018)
- D. Darvasi, M. Soller, Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus, Theor. Appl. Genet. (1992).
- J. Fan, Q. Li, Y. Wang. Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions, Journal of the Royal Statistical Society : Series B (Statistical Methodology) (2017)
- E.S. Lander and D. Botstein. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics (1989)
- R.J. Lebowitz, M. Soller, J.S. Beckmann. Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines, Theor. Appl. Genet. (1987).
- C.E. Rabier. On statistical inference for selective genotyping, J. Stat. Plan. Infer. (2014)
- C.E. Rabier. On stochastic processes for Quantitative Trait Locus mapping under selective genotyping, Statistics (2015)
- C.E. Rabier and C. Delmas. The SgenoLasso and its cousins for selective genotyping and extreme sampling, Statistics (2021)
- R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society B (1996).
- M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society Series B (2006).
- Y. Zhao, M. Gowda, F.H. Longin, T. Würschum, N. Ranc, J.C. Reif, Impact of selective genotyping in the training population on accuracy and bias of genomic selection, Theoretical and Applied Genetics (2012).
- H. Zou, T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society : Series B (Statistical Methodology), (2005).