Gaussian and Chi Square processes for Quantitative Trait Locus mapping under selective genotyping

Charles-Elie Rabier

INRA, MIAT, Toulouse, France

07/12/2014

What is a QTL ?

QTL = Quantitative Trait Locus

A QTL is a locus responsible for the variation of a quantitative trait

How can we detect QTL ?

We need :

- a segregating population (obtained with the help of genetic crosses)
- genetic markers located on the genome
- \bullet phenotypes (i.e. trait)

 \Rightarrow statistical methods will help us to detect and find the QTL

First part :

Selective Genotyping The QTL is located on a genetic marker

Oracle situation : all the genotypes are known

• X : random variable corresponding to the genotype at the QTL

$$
X = \begin{cases} -1 & \text{with probability } 1 - p \\ 1 & \text{with probability } p \end{cases}
$$

We suppose $p \neq \{0, 1\}$

• Y : random variable corresponding to the phenotype

$$
Y = \mu + q X + \sigma \varepsilon \quad \text{where} \quad \varepsilon \sim N(0, 1)
$$

Oracle situation : all the genotypes are known

Probability distribution of the phenotypes *Y*

Oracle statistical test $(\mu, \mathbf{q}, \sigma)$

Using a sample of *n* observations (*X^j* , *Yj*) i.i.d., we test :

*H*₀ : $q = 0$ *vs H*₁ : $q \neq 0$

We consider a local alternative
$$
H_a: q = \frac{a}{\sqrt{n}}
$$

Oracle statistical test :

$$
T = \frac{\sum_{j=1}^{n} \frac{1}{p} (Y_j - \overline{Y}) \, 1_{X_j=1} - \frac{1}{1-p} (Y_j - \overline{Y}) \, 1_{X_j=-1}}{\hat{\sigma} \, \sqrt{\frac{n}{p \, (1-p)}}}
$$

$$
\mathcal{T} \stackrel{H_0}{\rightarrow} \mathcal{N}(0, 1) \quad \text{and} \quad \mathcal{T} \stackrel{H_a}{\rightarrow} \mathcal{N}\left(\frac{2a\,\sqrt{\rho\,(1-\rho)}}{\sigma},\,1\right)
$$

Selective Genotyping

Genotyping is expensive

 \Rightarrow Selective Genotyping : we genotype only individuals who present extreme phenotypes *Y*.

At a given power, a large increase of the number of individuals

leads to a decrease of the number of individuals genotyped

Lebowitz et al. (Theoretical and Applied Genetics, 1987) Darvasi and Soller (Theoretical and Applied Genetics, 1992)

Genes for fat deposition in Italian pigs (Fontanesi et al. 2012) Genes for the Growth of the Clam Meretrix (Lu et al. 2013)

Model under selective genotyping

X is available only for individuals who present extreme phenotypes *Y*

 \Rightarrow We observe \overline{X} instead of X :

$$
\overline{X} = \begin{cases} X & \text{if } Y \notin [S_-, S_+] \\ 0 & \text{otherwise} \end{cases}
$$

where *S*[−] et *S*⁺ are two real thresholds such as *S*[−] ≤ *S*+.

Model under selective genotyping

Probability distribution of the phenotypes *Y*

Wald test $(\mu, \mathbf{q}, \sigma)$

*H*₀ : $q = 0$ *vs H*₁ : $q \neq 0$

We consider a local alternative H_a : $q=\frac{a}{\sqrt{n}}$

• Wald statistic

$$
W_1 = \frac{2\sqrt{n}}{\hat{\sigma}^2} \sqrt{\hat{A} p(1-p)} \hat{q} , \quad W_1 \stackrel{H_0}{\rightarrow} N(0, 1)
$$

then $W_1 \stackrel{H_a}{\rightarrow} N\left(\frac{2a\sqrt{A p(1-p)}}{\sigma^2}, 1\right)$

$$
\mathcal{A} = E_{H_0} \left[(Y - \mu)^2 \mathbf{1}_{\overline{X} \neq 0} \right] = \sigma^2 \left\{ \gamma + z_{\gamma_+} \varphi(z_{\gamma_+}) - z_{1 - \gamma_-} \varphi(z_{1 - \gamma_-}) \right\}
$$

$$
\hat{\mathcal{A}} = \frac{1}{n} \sum_{j=1}^n \left(Y_j - \overline{Y} \right)^2 \mathbf{1}_{\overline{X}_j \neq 0}
$$

How to optimize the selective genotyping

- We would like to genotype only a percentage γ of the population
- \Rightarrow How should we choose the optimal γ_+ and γ_- ?

 $\forall p, \kappa_1$ reaches its maximum *M* for $\gamma_+ = \gamma_- = \gamma/2$

$$
M=\gamma\ +\ 2\ z_{\gamma/2}\ \varphi(z_{\gamma/2})
$$

∀*p*, we should genotype symmetrically

3 strategies suitable for the data analysis under selective genotyping

- **¹** Wald test based on all the phenotypes (even the phenotypes for which the genotypes are missing)
- **²** Comparison of means based on the extreme phenotypes
- **³** Wald test based only on the extreme phenotypes

Rabbee, Speca, Armstrong, Speed (Genet. Res. Camb., 2004)

Comparison of the 3 strategies (µ, *q*, σ)

Lemma

$$
W_1 := \frac{2\sqrt{n}}{\hat{\sigma}^2} \sqrt{\hat{A} p(1-p)} \hat{q}_1
$$

\n
$$
T_2 := \sqrt{p(1-p)} \left\{ \frac{\sum_{j=1}^n \frac{1}{p}(Y_j - \overline{Y})1_{\overline{X}_j=1} - \frac{1}{1-p}(Y_j - \overline{Y})1_{\overline{X}_j=-1}}{\sqrt{n \hat{A}}} \right\}
$$

\n
$$
W_3 := \frac{2\sqrt{n}}{\hat{\sigma}^2} \sqrt{\hat{A} p(1-p)} \hat{q}_3
$$

*have the same asymptotic laws under H*⁰ *and under Ha, that is to say :*

$$
N(0, 1) \quad et \quad N\left(\frac{2a\sqrt{A p(1-p)}}{\sigma^2}, 1\right)
$$

*where q*ˆ¹ *and q*ˆ³ *denote the MLE of q for strategies one and three, and*

$$
\hat{\mathcal{A}} = \frac{1}{n} \sum_{j=1}^{n} (Y_j - \overline{Y})^2 \mathbf{1}_{\overline{X}_j \neq 0} \qquad , \qquad \overline{Y} = \frac{1}{n} \sum_{j=1}^{n} Y_j
$$
\n
$$
\mathcal{A} = \sigma^2 \left\{ \gamma + z_{\gamma_+} \varphi(z_{\gamma_+}) - z_{1-\gamma_-} \varphi(z_{1-\gamma_-}) \right\} \quad , \quad \hat{\sigma}^2 = \frac{1}{n-1} \sum_{j=1}^{n} (Y_j - \overline{Y})^2
$$

Conclusions on Selective Genotyping

- We should genotype symmetrically
- The non extreme phenotypes don't bring any extra information for statistical inference
- We should genotype 30% of the individuals (it depends on the cost ratio genotyping/phenotyping)
- The comparison of means is optimal

R., JSPI 2014

CPU time (in seconds)

$$
(q=0.3, p=1/2, \gamma=0.3, \gamma_{+}=\gamma_{-}=\gamma/2)
$$

Second part :

Genome Scan The QTL location is unknown

Context

- The chromosome is represented by a segment [0, *T*]
- The distance on [0, *T*] is called the genetic distance
- \bullet $X(.)$: genome of one individual
- • We consider Haldane modeling

• No crossover interference

•
$$
N(.)
$$
 : standard Poisson process on [0, T]
\n
$$
X(0) = \begin{cases} 1 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/2 \end{cases}
$$

$$
X(t)=X(0)(-1)^{N(t)}
$$

• Calculations on the Poisson distribution show that

$$
r(t, t') = \mathbb{P}(X(t)X(t') = -1) = \mathbb{P}(|N(t) - N(t')| \text{ odd})
$$

= $\frac{1}{2}(1 - e^{-2|t-t'|}) = \frac{1}{2}(1 - \rho(t, t'))$

- *t* ? : QTL location
- Y : random variable corresponding to the phenotype

$$
Y = \mu + q X(t^*) + \sigma \varepsilon \quad \text{ot} \quad \varepsilon \sim N(0, 1)
$$

- Genome information X(.) available only at fixed locations, called genetic markers
- *K* genetic markers on [0, *T*] located at

$$
t_1 = 0 < t_2 < \ldots < t_K = T
$$

Oracle situation

One observation is

$(Y, X(t_1), ..., X(t_K))$

and the challenge is that the QTL location t^* is unknown!!!

The Interval Mapping of Lander and Botstein (1989)

We want to test : $H_0: q=0$ vs $H_1: q \neq 0$

The Interval Mapping

- the QTL location t^* is unknown
- \Rightarrow we scan the interval [0, T]
- \Rightarrow Likelihood Ratio Tests (LRT) on the whole interval

How to perform the LRT

• for each location $t \in [0, T]$ not on markers, "genome information" *X*(*t*) unknown

 \Rightarrow probability of the genotypes at the QTL using the genome information on markers and Haldane formula

 \Rightarrow model of mixture of mixture

The Interval Mapping of Lander and Botstein (1989)

- Λ*n*(*t*) : LRT at location *t*
- the $\Lambda_n(t)$ define a process $\Lambda_n(.)$

We look for only one QTL on the interval [0, *T*]

⇒ LRT statistic on the whole interval : sup Λ*n*(.)

Selective Genotyping framework

$\overline{X}(t)$ is the random variable such as

$$
\overline{X}(t) = \begin{cases} X(t) & \text{if } Y \notin [S_-, S_+] \\ 0 & \text{otherwise} \end{cases}
$$

then, in our problem, one observation will be

$$
\left(Y, \overline{X}(t_1), ..., \overline{X}(t_K)\right).
$$

[Intro](#page-1-0) [Selective Genotyping](#page-3-0) [Genome Scan](#page-15-0) [Conclusion](#page-37-0) [Oracle](#page-16-0) [Sgeno](#page-22-0) [Asymptotic results](#page-24-0) [Critical values](#page-35-0) $\overline{\mathsf{Likelihood}}$ of $\left(Y,\,\overline{X}(t_1),\,...,\,\overline{X}(t_{\mathsf{K}})\right)$

When $t = t^*$

$$
L_{t^*}(\theta) = \left[p(t^*) f_{(\mu+q,\sigma)}(Y) 1_{Y \notin [S_-,S_+]} + \{1-p(t^*)\} f_{(\mu-q,\sigma)}(Y) 1_{Y \notin [S_-,S_+]} + \frac{1}{2} f_{(\mu+q,\sigma)}(Y) 1_{Y \in [S_-,S_+]} + \frac{1}{2} f_{(\mu-q,\sigma)}(Y) 1_{Y \in [S_-,S_+]} \right] g(.)
$$

where

 $f_{(m,\sigma)}$ is the Gaussian density with parameters (m,σ) \bullet $g(.)$ is a function which does not depend on parameters μ , *q* and σ

and

$$
p(t^*) = Q_{t^*}^{1,1} 1_{\overline{X}(t^{*})=1} 1_{\overline{X}(t^{*})=1} + Q_{t^*}^{1,-1} 1_{\overline{X}(t^{*})=1} 1_{\overline{X}(t^{*})=-1} + Q_{t^*}^{-1,1} 1_{\overline{X}(t^{*})=-1} 1_{\overline{X}(t^{*})=1} + Q_{t^*}^{-1,-1} 1_{\overline{X}(t^{*})=-1} 1_{\overline{X}(t^{*})=-1}
$$

Score statistic and LRT statistic

 $\theta = (\alpha, \mu, \sigma)$ parameter of the model at *t* fixed Θ $\theta_0 = (0, \mu, \sigma)$ stands for H_0

Score statistic at *t*

$$
S_n(t) = \frac{\frac{\partial l_t^n}{\partial q}\mid_{\theta_0}}{\sqrt{\mathbb{V}\left(\frac{\partial l_t^n}{\partial q}\mid_{\theta_0}\right)}}\;,
$$

with $I_l^n(\theta)$ log likelihood at *t*, associated to *n* observations. LRT statistic at *t*

$$
\Lambda_n(t) = 2 \left\{ I_t^n(\widehat{\theta}) - I_t^n(\widehat{\theta}_{|H_0}) \right\} ,
$$

with θ MLE, and $\theta_{| H_0}$ MLE under H_0 .

- known *t* ? ⇒ regular model
- unknown *t* ? ⇒ irregular model (under *H*0, the Fisher Information Matrix relative to *t* is equal to zero)

About the hypotheses tested

H_0 : "there is no QTL on $[0, T]$ "

H_{at^*} : "the QTL is located at $t^* \in [0, T]$ with effect $q = a/\sqrt{a}$ *n* "

A non linear interpolation

Theorem (R., Statistics 2013)

$$
S_n(.) \Rightarrow V(.) \quad , \quad \sup \Lambda_n(.) \stackrel{\mathcal{L}}{\longrightarrow} \sup V^2(.) \quad \text{where}
$$

 \bullet *V*(.) *is the non linear interpolated process such as*

$$
\forall t \in [0, T] \quad V(t) = \frac{\alpha(t) \ V(0) + \beta(t) \ V(T)}{\sqrt{\alpha^2(t) + \beta^2(t) + 2\alpha(t)\beta(t)\rho(0, T)}}
$$
\nwith
$$
Cov\{V(0), V(T)\} = \rho(0, T)
$$

V(.) *is a Gaussian process with unit variance and with expectation :*

under H_0 *:* $m(t) = 0 \ \forall t \in [0, T]$ *under H_{at}*^{\cdot} *: m_t*_{\cdot} (0) = $\frac{a \sqrt{A}}{2}$ $rac{\sqrt{\mathcal{A}}}{\sigma^2}$ $\rho(0, t^*)$, $m_{t^*}(T) = \frac{a\sqrt{\mathcal{A}}}{\sigma^2}$ $\frac{\sqrt{A}}{\sigma^2}$ $\rho(t^*, T)$ $\forall t \in [0, T]$ $m_{t^{\star}}(t) = \frac{\alpha(t) m_{t^{\star}}(0) + \beta(t) m_{t^{\star}}(T)}{\sqrt{\alpha^2(t) + \beta^2(t) + 2\alpha(t) \beta(t) \rho(0, T)}}$

Efficiency κ of the LRT on the whole chromosome

Oracle : no selective genotyping (i.e. the genome information on markers is available for all the individuals)

Lemma

$$
\kappa = \gamma + z_{\gamma_+} \varphi(z_{\gamma_+}) - z_{1-\gamma_-} \varphi(z_{1-\gamma_-}) = \mathcal{A}/\sigma^2
$$

 κ *reaches its maximum for* $\gamma_+ = \gamma_- = \gamma/2$

Mean function and covariance function ($a = 4$, $\sigma = 1$, $T = 20$ cM, $\gamma = 1, \sigma = 1$)

Mean function under selective genotyping

One path of the process *V*(.) under *H*⁰

Mean function of the process *V*(.) under *Hat*? $(t^* = 6$ cM, $\gamma = 0.3)$

Rabier CE [Gaussian processes under selective genotyping](#page-0-0)

One path of the process *V*(.) under *Hat*? $(t^* = 6$ cM, $\gamma = 0.3)$

Rabier CE [Gaussian processes under selective genotyping](#page-0-0)

A non linear interpolation

Lemma

Let Tn(.) *be the process such as*

$$
T_n(t) = \frac{\alpha(t) T_n(0) + \beta(t) T_n(T)}{\sqrt{\alpha^2(t) + \beta^2(t) + 2\alpha(t)\beta(t)\rho(0, T)}}, \text{ then}
$$

$$
T_n(.) \Rightarrow V(.) \text{ and } T_n^2(.) \Rightarrow V^2(.)
$$

About the supremum ...

$$
\sup_{[0,T]} T_n^2(t) = \max \left\{ T_n^2(0), T_n^2(T), h_n(0,T) \right\}
$$

where

$$
h_n(0,T) = \frac{T_n^2(0) + T_n^2(T) - 2\rho(0,T) T_n(0) T_n(T)}{1 - \rho^2(0,T)} 1_{\frac{T_n(T)}{T_n(0)} \in]\rho(0,T), \frac{1}{\rho(0,T)}[}
$$

We should not perform tests everywhere on the chromosome ! ! !

Application to threshold calculations

Computation of the critical value c verifying $P_{H_0}(\sup V^2(.)>c)=1-\alpha$

 \Rightarrow QSIMVNEF function (Genz, 1992)

 $T = 1$ M, markers equally spaced, $\gamma = 1$

An example with a maximum of 657 statistical tests on the genome

•
$$
T = 10M
$$
, $K = 329$, $\gamma = 1$

•
$$
\forall k = 1, ..., 301
$$
 $t_k = 0.01(k - 1)$

∀*k* = 302, ..., 329 *t^k* = 3.25 + 0.25(*k* − 302)

Other methods : Manichaïkul et al. (2007), Chang et al. (2009)

Conclusions

Selective Genotyping on one genetic marker :

- We should genotype symmetrically
- The non extreme phenotypes don't bring any extra information for statistical inference
- We should genotype 30% of the individuals (it depends on the cost ratio genotyping/phenotyping)
- **O** The comparison of means is optimal

Genome Scan + Selective Genotyping :

- **O** Non linear interpolation under Haldane
- The threshold is the same with/without selective genotyping
- Comparison of means on each marker \bullet
- Only one statistical test between markers
- Linear interpolation under interference
- ● Asymptotic robustness of the LRT

Thanks to

JM Azaïs, C Delmas, JM Elsen, C Ané

