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Genomic Selection

Predictions can be performed as soon as the DNA is available
⇒ GS accelerates significantly the genetic gain

We do not have to wait to observe the phenotype
of the candidate at adult age ...

For instance,

in bananas (Nyine et al., 2018) : 8 months before having an idea on the
production capacity

in citrus (Minamikawa et al, 2017) : 25 years before obtaining the fruits
of interest
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Genomic Selection

At the first generation

individuals are phenotyped and genotyped
the model is learnt

next, at each generation

no need to phenotype the individuals
only need to genotype individuals
individuals selected on the basis of genomic predictions

After a large number of generations

calibration model not reliable anymore
need to genotype and to phenotype again
a new model is learnt

How can we learn a model using selected individuals?
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Can we learn a model using selected individuals?

“Maintaining the accuracy of genomewide predictions when selection has
occurred in the training population”

by Brandariz SP and Bernardo R, Crop Science, 58(3), 2018

it does not work it works

In order to obtain a reliable model, we need to keep
a few worst individuals in the breeding programs
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Selective Genotyping is highly linked
to Genomic Selection

Genotyping was expensive in the past

⇒ Selective Genotyping : we genotype only individuals who present extreme
phenotypes Y

At a given power, a large increase of the number of individuals

leads to a decrease of the number of individuals genotyped

Lebowitz et al. (Theoretical and Applied Genetics, 1987)
Darvasi and Soller (Theoretical and Applied Genetics, 1992)

To go further in the statistical theory :

R. (Journal of Statistical Planning and Inference, 2014)
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Model corresponding to selective genotyping

Probability distribution of the phenotypes Y

Worst scenario Best scenario
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Can we elaborate a method able to learn
a model based on extreme individuals?
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Model

X (.) : genome of one individual

t?1 , . . . , t
?
m : QTL (i.e. Quantitative Trait Loci) locations

Assuming a linear model for the phenotype Y

Y = µ+
m∑

s=1

X (t?s )qs + σε with ε ∼ N(0, 1)

Genome information X(.) available :

only at genetic markers t1, . . ., tK
only if Y is extreme (i.e. Y > S+ or Y < S−)

⇒ Dependency between the alleles at the markers and the extreme
phenotypes Y

The LASSO (Tibshirani, 1996) is unable to handle this dependency

A new approach is needed ...
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Our starting point

ManhattanPlot in association studies

source Wikipedia

The Interval Mapping of Lander and Botstein (1989) :

The chromosome is represented by a segment [0,T ]

Λn(t) : Likelihood Ratio Test at a given location t ∈ [0,T ], for testing
q1 = 0 vs q1 6= 0

Λn(.) : Likelihood Ratio Test process on [0,T ]
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Score statistic and LRT statistic

θ1 = (q1, µ, σ) parameter of the model at t fixed

θ1
0 = (0, µ, σ) stands for H0

Score statistic at t

Sn(t) =

∂lnt
∂q1
|θ1

0√
Var

(
∂lnt
∂q1
|θ1

0

) ,

with ln
t (θ1) log likelihood at t , associated to n observations.

LRT statistic at t
Λn(t) = 2

{
ln
t (θ̂1)− ln

t (θ̂1|H0 )
}

,

with θ̂1 MLE, and θ̂1|H0 MLE under H0.
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About the hypotheses studied

H0 : “there is no QTL on [0,T ]”

Hat? : “there are m QTL located at t?1 , ..., t?m with effects
q1 = a1/

√
n, . . . , qm = am/

√
n where a1 6= 0, . . . , am 6= 0” .

Theorem

Sn(.)⇒ Z (.) , Λn(.)
F .d.→ Z 2(.) , sup Λn(.)

L−→ sup Z 2(.)

Z (.) is a Gaussian process perfectly known
(i.e. the covariance function and the mean function are known)
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Introducing the SgenoLasso
1) we discretize the process at marker locations

~Sn = ~mZ ,t? + ~ε + oP(1)

where ~Sn = (Sn(t1) , Sn(t2) , ... , Sn(tK ))′

~mZ ,t? = (mZ ,t?(t1) , mZ ,t?(t2) , ...,mZ ,t?(tK ))′

~ε ∼ N(0,Σ) with Σkk′ = Cov (Z (tk ),Z (tk′))

2) we decorrelate the process

Let T?K := {t?1 , . . . , t?m} and Σ := BB′, we have

B−1~Sn = B′∆ + B−1~ε + oP(1)

where ∆ := (∆1, ...,∆K )′

and ∆k =

{
0 if tk /∈ T?K
as
σ

√
A
σ

if tk ∈ T?K with s | t?s = tk

S+ S- mu

14



Introducing the SgenoLasso
In fact, non null ∆k are unknown
⇒ L1 penalized regression Lasso (Tibshirani, 1996)

∆̂SgenoLasso(λ, α) = arg min
∆

(∥∥∥B−1~Sn − B′∆
∥∥∥2

2
+ λ ‖∆‖1

)
SgenoLasso presents all the properties of the classical Lasso !

Its β-min condition :

min
s|t?s ∈TK

|as|
√
A

σ2
√

K
>> Φ−2

√
m log(K )

K

Its irrepresentable condition :∥∥∥Σ(.,?)(Σ(?,?))−1Sign(a1, . . . ,am)
∥∥∥
∞
≤ C < 1

where ‖x‖∞ = maxj
∣∣xj
∣∣, Sign(a1, . . . ,am) = (Sign(a1), . . . ,Sign(am))>

β-min condition + irrep cond⇒ consistent variable selection
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Applications to association studies (Simulated data)
10,000 markers on [0, 10M] / 1,000 markers on [0, 1M]

16 QTLs located only on [0, 1M]

L1 ratio
∑1000

i=1 |∆̂i |/
∑10000

i=1 |∆̂i |

γ γ+/γ SgenoLasso Lasso Group Lasso EN RaLasso

0.2

1/2 94.19% 91.69% 97.46% 97.44% 98.09%
3/4 91.52% 84.75% 95.88% 96.02% 95.08%
7/8 92.38% 75.46% 94.67% 95.23% 89.33%
1 85.03% 21.14% 21.86% 27.37% 44.93%

0.3

1/2 91.62% 83.45% 92.87% 93.67% 95.36%
3/4 90.88% 76.18% 89.59% 91.10% 91.13%
7/8 86.22% 65.03% 78.00% 82.84% 80.32%
1 78.00% 20.92% 20.82% 24.92% 48.25%

γ+/γ = 1/2 3/4 7/8 1
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The SgenoLasso has several cousins

SgenoLasso is built on the L1 penalty of Lasso (Tibshirani, 1996)

∆̂SgenoLasso(λ, α) = arg min
∆

(∥∥∥B−1~Sn − B′∆
∥∥∥2

2
+ λ ‖∆‖1

)

SgenoElasticNet is built on the mixture of L1 and L2 penalties of Elastic Net
(Zou and Hastie, 2005)

∆̂SgenoEN(λ, α) = arg min
∆

(∥∥∥B−1~Sn − B′∆
∥∥∥2

2
+

1− α
2
‖∆‖2

2 + α ‖∆‖1

)

SgenoGroupLasso is built on the Group Lasso penalty (Yuan and Lin, 2006)

∆̂SgenoGroupLasso(λ) = arg min
∆

(∥∥∥B−1~Sn − B′∆
∥∥∥2

2
+ λ

nbGroup∑
i=1

√
Li

∥∥∥~∆i

∥∥∥
2

)
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The SgenoLasso has several cousins
10,000 markers on [0, 10M] / 1,000 markers on [0, 1M]

16 QTLs located only on [0, 1M]

L1 ratio
∑1000

i=1 |∆̂i |/
∑10000

i=1 |∆̂i |

SgenoLasso SgenoGroupLasso SgenoEN
γ γ+/γ L1 ratio m̂ L1 ratio m̂ L1 ratio m̂

0.2

1/2 94.19% 17.39 98.33% 24.9 96.03% 16.90
3/4 91.52% 16.3 95.38% 24.3 92.59% 17.41
7/8 92.38% 16.29 96.83% 24.6 93.19% 17.13
1 85.03% 17.09 90.53% 22.8 84.93% 17.67

0.3

1/2 91.62% 17.55 92.35% 24.6 86.53% 17.87
3/4 90.88% 17.59 94.84% 30.9 91.84% 15.43
7/8 86.22% 16.82 89.96% 29.3 86.68% 17.30
1 78.00% 17.28 82.61% 28.6 77.23% 17.89

γ+/γ = 1/2 3/4 7/8 1 18



Rice data

Data from Spindel et al. (2015) and Begum et al. (2015)

Trait of interest : flowering date during the dry season 2012

K =13,101 markers, randomly chosen by the authors from their 73,147
collected markers

n = 312 in total (i.e. under complete genotyping)

only 93 extreme individuals when γ = 0.3
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Rice data
(selective genotyping performed symmetrically)

γ Method Selected genes
1 Begum et al. S3-1125848, S3-1165376, S3-1221494, S3-1269941, S3-1394477

0.3 SgenoLasso 4 genes matching those of Begum et al.
0.3 SgenoEN 5 genes matching . . .
0.3 SgenoGroupLasso 5 genes matching . . .
0.3 Lasso 2 genes matching . . .
0.3 EN 5 genes matching . . .
0.3 Group Lasso 3 genes matching . . .

20



The predictive ability of the SgenoLasso (simulated
data, 10000 markers)

Accuracy criterion Cor(ŷ , y)

γ γ+/γ SgenoLasso Lasso Group Lasso EN RaLasso

0.1 1 30.97% 6.49% 3.17% 4.38% 10.43%
7/8 31.25% 30.55% 29.87% 29.74% 28.78%

0.2 1 27.88% 7.12% 4.05% 5.41% 11.08%
7/8 28.26% 27.98% 27.86% 28.09% 26.28%

0.3 1 26.79% 9.02% 6.89% 7.48% 11.96%
7/8 28.13% 27.85% 26.59% 28.25% 26.05%

γ+/γ = 7/8 γ+/γ = 1

Our answer to Brandariz and Bernardo (Crop Science, 2018) :
no need to keep the worst individuals in the breeding programs 21



Thank you for listening
A few references :

S.P. Brandariz and R. Bernardo. Maintaining the Accuracy of Genomewide Predictions when Selection Has
Occurred in the Training Population, Crop Science (2018)

D. Darvasi, M. Soller, Selective genotyping for determination of linkage between a marker locus and a
quantitative trait locus, Theor. Appl. Genet. (1992).

J. Fan, Q. Li, Y. Wang. Estimation of high dimensional mean regression in the absence of symmetry and
light tail assumptions, Journal of the Royal Statistical Society : Series B (Statistical Methodology) (2017)

E.S. Lander and D. Botstein. Mapping mendelian factors underlying quantitative traits using RFLP linkage
maps, Genetics (1989)

R.J. Lebowitz, M. Soller, J.S. Beckmann. Trait-based analyses for the detection of linkage between marker
loci and quantitative trait loci in crosses between inbred lines, Theor. Appl. Genet. (1987).

C.E. Rabier. On statistical inference for selective genotyping, J. Stat. Plan. Infer. (2014)

C.E. Rabier. On stochastic processes for Quantitative Trait Locus mapping under selective genotyping,
Statistics (2015)

C.E. Rabier and C. Delmas. The SgenoLasso and its cousins for selective genotyping and extreme
sampling, Statistics (2021)

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society B
(1996).

M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal
Statistical Society Series B (2006).
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